OCEAN WALL | RESEARCH

Robotics and The Rare Earth Bottleneck

CONTENTS

Executive Summary
Specialised Robots
Humanoid Robots 6
Neodymium-Iron-Boron (NdFeB) Permanent Magnets 7
Chinese Rare Earth Bottleneck
Glossary 10

Should you require any further information, or would like to discuss our research, please email research@oceanwall.com

Authors

Max Taylor, Associate | <u>max@oceanwall.com</u>

EXECUTIVE SUMMARY

The Robotics industry is entering a transformative era, driven by exponential advances in artificial intelligence and hardware capabilities. From traditional industrial arms on factory floors to next-generation humanoid machines capable of perception, reasoning, and mobility, robots are now becoming a central pillar of global automation. The global robotics market was valued at \$74.12 billion in 2024,¹ with over 541,321 new industrial units installed globally,² a figure expected to rise as labour shortages, cost pressures, and demand for 24/7 precision operations increase. Meanwhile, the humanoid robotics segment is attracting significant interest and capital, with Morgan Stanley forecasting total humanoid revenue could exceed \$1 trillion by 2050 in the United States (U.S.) alone.³

However, behind the sleek hardware and Al-enabled autonomy lies a critical bottleneck: materials.

Advanced robots, particularly humanoids, rely on rare earth magnets, especially Neodymium-Iron-Boron (NdFeB), to power compact, high-torque electric motors. Each humanoid robot may require several kilograms of these magnets, and as production scales, the demand for rare earth elements will surge. China currently controls 91% of refined rare earth production,⁴ creating an acute geopolitical and supply chain risk. Recent export controls by Beijing have already triggered major disruptions across automotive and robotics industries, highlighting the fragility of this dependency.

This note explores both sides of the robotics opportunity: the explosive potential of humanoid and industrial automation, and the rare earth material bottleneck that could constrain it. We highlight MP Materials as a strategic U.S. solution to this problem. As the largest rare earth miner in the Western Hemisphere and the only U.S. company building a fully integrated mine-to-magnet supply chain, MP is now backed by the U.S. Department of Defense and scaling aggressively. Its vertical model offers rare geopolitical insulation and direct leverage to a multi-decade capex cycle in critical materials.

For broader exposure, we also recommend the VanEck Rare Earths & Strategic Materials UCITS ETF, which provides diversified access across the entire value chain, from upstream miners to downstream refiners and magnet manufacturers. With 69.55% of holdings outside China,⁵ it is positioned to benefit from price squeezes triggered by China's monopoly, the ETF is an efficient vehicle for gaining strategic exposure to the global scramble for rare earth dominance, an issue now inextricably linked with the future of robotics.

¹ https://www.marketresearchfuture.com/reports/robotics-market-

^{4732#:~:}text=Robotics%20Market%20Size%20in%202023,2024%2D2032):%2018.4%25.

² https://ifr.org/ifr-press-releases/news/record-of-4-million-robots-working-in-factories-worldwide

³ https://advisor.morganstanley.com/john.howard/documents/field/j/jo/john-

howard/The_Humanoid_100_-_Mapping_the_Humanoid_Robot_Value_Chain.pdf

⁴ https://www.iea.org/topics/critical-minerals

⁵ https://www.vaneck.com/uk/en/investments/rare-earth-etf/portfolio/

SPECIALISED ROBOTS

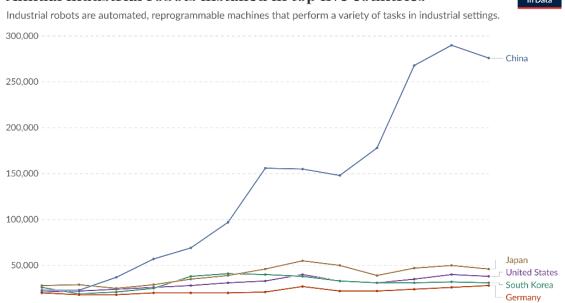
Industrial Robots

Industrial robots are the classic mechanised arms and machines working on factory floors. Typically stationary, multi-axis robotic arms, they perform repetitive or dangerous manufacturing tasks such as welding, painting, assembly, material handling, and machine tending. These robots are built for speed, precision, and endurance, often handling heavy payloads, or operating in hazardous conditions to augment or replace human labour in production lines.

Source: Wevolver

The automotive industry was an early adopter and remains a dominant user, accounting for 25% of the robots installed in 2023, followed by the electronics industry (23%).⁶ Other sectors include metals, plastics, and food processing. After decades of use, industrial robotics is a mature but growing segment.

The global industrial robotics market reached about \$42 billion in 2023 and is expected to grow at a CAGR of 15.2% as automation spreads. In 2023, factories worldwide installed ~541,000 new industrial robots and the operational stock of industrial robots hit a record ~4.3 million units in 2023, almost triple a decade earlier. Even as newer segments grow faster, industrial robots will likely remain the largest revenue segment through this decade. Growth drivers include rising labour costs, demand for high precision and uptime, and improved robot capabilities.


⁶ https://ifr.org/img/worldrobotics/Executive_Summary_WR_2024_Industrial_Robots.pdf

⁷ https://statzon.com/insights/global-industrial-robot-market

⁸ https://ifr.org/ifr-press-releases/news/record-of-4-million-robots-working-in-factories-worldwide

Data source: International Federation of Robotics (IFR) via Al Index Report (2025)

OurWorldinData.org/artificial-intelligence | CC BY Note: Example machines that are not classified as robots: software (e.g., voice assistants), remote-controlled drones, self-driving cars, "smart" washing machines.

2018

2020

2016

Source: Our World in Data

2022 2023

Notably, Asia leads in adoption, accounting for 70% of all new robot installation in 2023 (China alone installed ~276,000 units in 2023, 51% of global). China's industrial robot market has been growing ~5–10% annually and now installs more robots each year than the next four countries combined. Major industrial nations like Japan, Germany, South Korea, and the U.S. are all adopters, though China's scale is unmatched.

Medical robots

0

2011 2012

Medical robots range from surgical robots in operating rooms to rehabilitation robots, diagnostic robots, and hospital automations. The flagship application is robot assisted surgery. Surgical robotic systems (the da Vinci system by Intuitive Surgical) enable minimally invasive surgeries with enhanced precision and control. These systems typically involve robotic arms manipulated by a surgeon at a console, translating the surgeon's hand movements into tiny instrument motions inside the patient. They offer benefits like finer motion scaling, tremor elimination, and 3D high-definition visualization, allowing complex procedures through small incisions.

Since the first FDA-approved surgical robot in 2000, surgical robots have revolutionised certain operations (e.g. prostatectomy, where the robotic approach is now standard of care). By 2023, Intuitive Surgical, A US Biotechnology company, had over 8,000 da Vinci robots installed

⁹ https://ourworldindata.org/grapher/annual-industrial-robots-installed

¹⁰ https://ifr.org/ifr-press-releases/news/record-of-4-million-robots-working-in-factories-worldwide

worldwide, performing ~1.5 million procedures annually.¹¹ Competitors have entered the field: e.g. Stryker's Mako system for orthopaedic knee and hip surgeries, Medtronic (Hugo robotic surgery platform), and Johnson & Johnson (developing the Ottava surgical robot).

Beyond surgery, medical robotics includes diagnostic robots (e.g. robotic imaging or ultrasound systems), rehabilitation robots (like exoskeleton suits that help patients regain movement in physiotherapy), telepresence robots for telemedicine consults, and hospital pharmacy robots that automate medication dispensing.

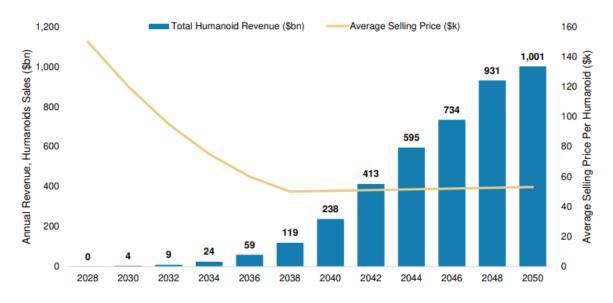
The medical robotics market is on a strong growth trajectory, driven by aging populations, technological advances, and an increasing physician acceptance as clinical benefits are demonstrated. The global medical robots' market is projected to increase from \$10.3 billion in 2025 to \$32.2 billion by 2032. It's worth noting that regulatory approvals and clinical evidence are critical to their adoption and success. Medical robots face high safety/efficacy bars from regulators (FDA, etc.), and hospitals only invest if there's clear benefit. Another key issue is public trust, with only 42% of the UK population saying they would allow robotic surgery¹³

Medical Market Outlook (USD)

Source: Persistence Market Research

¹¹ https://www.guoncologynow.com/post/emerging-robotic-platforms-foster-competition-encourage-innovation

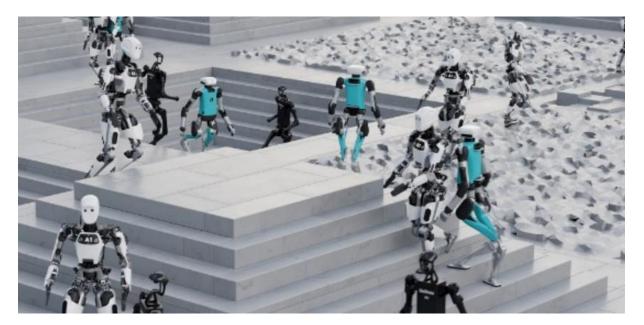
¹² https://www.persistencemarketresearch.com/market-research/medical-robots-market.asp


¹³ https://www.health.org.uk/reports-and-analysis/analysis/how-does-the-public-feel-about-health-technologies-and-data

HUMANOID ROBOTS

Humanoid robots, human-shaped machines designed for general-purpose tasks, are rapidly emerging as a new frontier in advanced automation. Companies like Tesla, Figure AI, Agility Robotics, and others are racing to commercialise humanoid robots capable of working in factories, warehouses, and eventually homes. Market projections reflect the growing enthusiasm: Morgan Stanley forecasts that the U.S. humanoid robot market alone could generate \$24 billion in revenue by 2035, \$238 billion by 2040, and a staggering \$1 trillion by 2050. ¹⁴ Elon Musk has even suggested that 10 billion humanoid robots could be operating by 2040, implying a world where robots eventually outnumber humans. ¹⁵

US Humanoids Market, Total Revenue (USD billions)


Source: Morgan Stanley

While Musk's projections may seem exaggerated, achieving such numbers would demand an immense scale of production and material supply. Nonetheless, the broader trend is unmistakable: humanoid robotics is rapidly gaining momentum, driven by recent advances in Al and hardware that are accelerating investment across the sector. For years, machine learning remained largely confined to digital software loops. But the rise of large language models (LLMs) and generative AI (GenAI) has pushed artificial intelligence into the physical world. Multi-modal models (MMMs), which combine vision, language, and motion, are enabling robots to learn through natural language, imitation, and simulation. This shift is shortening the R&D cycle dramatically: robots can now be trained virtually, tested in synthetic environments, and improved continuously through feedback loops.

¹⁴ https://advisor.morganstanley.com/john.howard/documents/field/j/jo/john-howard/The_Humanoid_100_-_Mapping_the_Humanoid_Robot_Value_Chain.pdf

¹⁵ https://www.reuters.com/technology/elon-musk-10-billion-humanoid-robots-by-2040-20k-25k-each-2024-10-29/

Humanoid robots train in a simulated version of reality called "Omniverse."

Source: Nvidia

Al's leap from the datacentre to the physical world marks a turning point. Until recently, Al could process speech, generate text, and produce images, but had little connection to motion. That's changing. Robots are becoming the physical embodiment of AI, capable not only of perceiving and reasoning, but of acting autonomously in real-world environments. This fusion of AI and robotics is blurring the lines between machines, mobile devices, and intelligent agents. As capital floods into the AI theme, humanoid hardware, once limited by mechanical and computational constraints, is now benefitting from a surge in R&D investment.

NEODYMIUM-IRON-BORON (NDFEB) PERMANENT MAGNETS

Modern robotics rely heavily on neodymium-iron-boron (NdFeB) permanent magnets in their electric motors and actuators. These are the most powerful magnets in the world and enable high torque in a compact size, essential for robot joints (and used in EV motors, wind turbines, drones, defence etc.). In a humanoid robot, nearly every limb and joint is powered by an electric motor containing NdFeB magnets, so dozens of magnets are needed per robot. As humanoid designs advance from ~25–30 degrees of freedom (DoF) to 50+, the magnet count per robot will rise accordingly. ¹⁶

In short, if robotics are on the cusp of transforming the way humans work, live, and interact with machines, then NdFeB magnets are the linchpin that will determine whether that future can scale. The robotics opportunity is no longer speculative, it is a capital-intensive, Al-adjacent industrial evolution, but one whose trajectory is deeply intertwined with the economics and geopolitics of rare earth materials.

_

¹⁶ https://www.adamasintel.com/humanoid-robots-and-the-future-of-motors-and-ndfeb-markets/

Make

Model

Year DoF WABOT-1

1973

7

Optimus Gen 3

2025

66 (est.)

BostonDynamics

Atlas

2013

28

Evolution of humanoid robot models over time showing increasing DoF

Source: Adamas Intelligence research

FIGURE

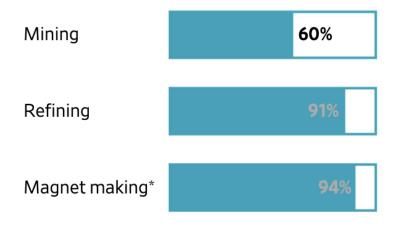
Figure 02

2024

50 (est.)

CHINESE RARE EARTH BOTTLENECK

HONDA

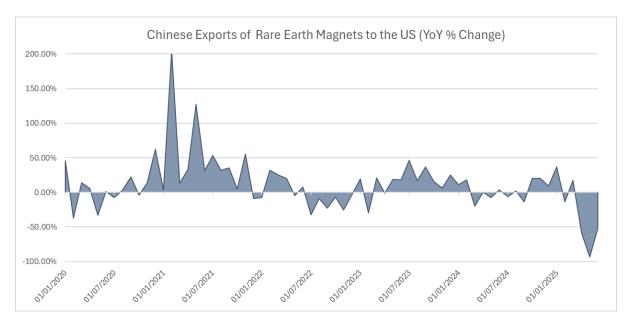

ASIMO

2000

26

The global supply of rare earth elements and manufacture of permanent magnets is highly concentrated and increasingly exposed to geopolitical risk. China maintains a stranglehold in this market, accounting for approximately 91% of the world's refined rare earth production, 60% of rare earth mining and 94% of sintered rare earth magnets according to International Energy Agency.¹⁷ In 2024 alone, China exported over 58,000 tonnes of rare earth permanent magnets and permanent magnet alloys.¹⁸

China Dominates the Rare Earth Supply Chain



Source: IEA

¹⁷ https://www.iea.org/topics/critical-minerals

¹⁸ https://www.adamasintel.com/record-rare-earth-magnet-exports-from-china-in-2024/

In April 2025, China imposed new export restrictions on rare earth elements, introducing a licensing regime that covers seven key materials (samarium, gadolinium, terbium, dysprosium, lutetium, scandium, and yttrium) on the grounds that they are "dual-use items" with both civilian and military applications. Although framed as a national security measure, the move was widely viewed, particularly by U.S. officials, as a retaliatory response to the Trump administration's sweeping increase in tariffs on Chinese imports just days earlier.

Source: Ocean Wall, Bloomberg

The impact on Western manufacturers was immediate and severe, exposing the fragility of the global supply chain. In May, China's exports of rare earth magnets to the U.S. dropped by 93.3% year-on-year, 19 triggering major disruptions. Ford was forced to idle its electric vehicle plant in Chicago due to magnet shortages, while German carmakers warned that continued delays could halt production altogether. Even Tesla's Optimus robot project was affected, with Elon Musk acknowledging that the magnet export licences needed from China were causing production delays. The crisis highlighted how deeply reliant the West remains on China for rare earth materials, critical components in everything from electric vehicles to advanced weaponry (for instance, an F-35 fighter jet contains around 920 pounds of rare earth magnets).²⁰

This supply shock has sharpened investor focus on companies that can secure, process, or diversify rare earth supplies outside China. Among these, player, and for broader exposure, the offers a diversified route into the supply chain.

¹⁹ Bloomberg Data

²⁰ https://discoveryalert.com.au/news/japan-eu-rare-earths-partnership-2025/

GLOSSARY

Term	Definition
Humanoid Robot	A robot with a human-like form, designed to perform general-purpose tasks such as factory or warehouse work, and eventually household duties.
Industrial Robot	A stationary, multi-axis robotic system used primarily in factories for tasks like welding, painting, and assembly.
Medical Robot	A robot used in healthcare settings for surgery, rehabilitation, diagnostics, or hospital automation.
Multi-Axis Robotic Arm	A fixed robotic system with multiple rotational or linear joints, used in industrial settings for repetitive tasks such as welding or assembly.
Telepresence Robot	A mobile robot that allows a person to be virtually present in a remote location, often used in healthcare or remote office work.
Exoskeleton	A wearable robotic suit that helps users regain movement, typically used in rehabilitation or heavy industrial settings.
Robot-Assisted Surgery	Procedures performed using robotic systems like the <i>da Vinci</i> by Intuitive Surgical, where a surgeon controls robotic arms for minimally invasive operations.
Degrees of Freedom	The number of independent movements a robot joint or limb can perform.
Omniverse	A simulation platform by Nvidia where humanoid robots are trained in virtual environments to speed up development.
LLM / MMM	Large Language Models (LLMs) and Multi-Modal Models (MMMs) combine Al capabilities like vision, language, motion to enhance robotic learning
NdFeB Magnets	Neodymium-Iron-Boron magnets—the strongest permanent magnets used in robot joints, EV motors, and wind turbines. Essential for compact, high-torque motion.
Rare Earth Elements (REEs)	A group of 17 elements used in electronics, motors, and magnets. Critical for robotics but mainly processed and exported by China (94% of magnet manufacturing globally).
Neodymium- Praseodymium (NdPr)	Key rare earth materials used in high-performance magnets. MP Materials focuses on their production to supply the robotics and EV sectors.
Dual-Use Materials	Substances with both civilian and military applications (e.g. rare earths used in both EVs and defence systems), often subject to export controls.

Disclaimer

This research report is a product of Ocean Wall Ltd, under Marco Polo Securities 15a-6 chaperone service, which is the employer of the research analyst(s) who has prepared the research report. The research analyst(s) preparing the research report is/are resident outside the United States (U.S.) and are not associated persons of any U.S. regulated broker-dealer and therefore the analyst(s) is/are not subject to supervision by a U.S. broker-dealer, and is/are not required to satisfy the regulatory licensing requirements of FINRA or required to otherwise comply with U.S. rules or regulations regarding, among other things, communications with a subject company, public appearances and trading securities held by a research analyst account.

Research reports are intended for distribution only to "Major Institutional Investors" as defined by Rule 15a-6(b)(4) of the U.S. Securities and Exchange Act, 1934 (the Exchange Act) and interpretations thereof by U.S. Securities and Exchange Commission (SEC) in reliance on Rule 15a-6(a)(2). If the recipient of this report is not a Major Institutional Investor as specified above, then it should not act upon this report and return the same to the sender. Further, this report may not be copied, duplicated and/or transmitted onward to any U.S. person, which is not the Major Institutional Investor. In reliance on the exemption from registration provided by Rule 15a-6 of the Exchange Act and interpretations thereof by the SEC in order to conduct certain business with Major Institutional Investors, Ocean Wall Ltd has entered into a chaperoning agreement with a U.S. registered broker-dealer, Marco Polo Securities Inc. ("Marco Polo").

Transactions in securities discussed in this research report should be affected through Marco Polo or another U.S. registered broker dealer.

This Report is not an offer or a solicitation to buy or sell any security. It should not be so construed, nor should it or any part of it form the basis of, or be relied on in connection with, any contract or commitment whatsoever. It is not an advertisement to an unLtd group of persons of securities, or related financial instruments. The Report does not constitute a personal recommendation, and the investments referred to may not be suitable for the specific investment objectives, financial situation or individual needs of recipients and should not be relied upon in substitution for the exercise of independent judgement. Past performance is not necessarily a guide to future performance and an investor may not get back the amount originally invested. The stated price of any securities mentioned herein is not a representation that any transaction can be affected at this price.

Each Report has been prepared using sources believed to be reliable, however these sources have not been independently verified and we do not represent it is accurate or complete. Neither Ocean Wall Ltd, nor any of its partners, members, employees or any affiliated company accepts liability for any loss arising from the use of the Report or its contents. It is provided for informational purposes only and does not constitute an offer to sell or a solicitation to buy any security or other financial instrument. However, the companies or legal entities covered in our content may pay us a fee, commission or other remuneration in order for Ocean Wall Ltd to provide corporate advisory or investor relation services. Ocean Wall Ltd accepts no fiduciary duties to the reader of this Report and in communicating it Ocean Wall Ltd is not acting in a fiduciary capacity. While Ocean Wall Ltd endeavours to update on a reasonable basis the information and opinions contained herein, there may be regulatory, compliance or other reasons that prevent us from doing so. The opinions, forecasts, assumptions, estimates, derived valuations and target price(s) contained in this material are as of the date indicated and are subject to change at any time without prior notice.

Ocean Wall Ltd does not make recommendations. Accordingly, we do not publish records of our past recommendations. Where a Fair Value price is given in our content, such as a DCF or peer comparison, this is the theoretical result of a study of a range of possible outcomes, and not a forecast of a likely share price.

Ocean Wall Ltd has a personal dealing policy which debars staff from dealing in shares, bonds or other related instruments of companies or legal entities which pay Ocean Wall Ltd for any services, however Ocean Wall Ltd may hold positions in these companies or legal entities where payment for services has been made in shares, bonds or other related instruments.

The views expressed and attributed to the research analyst or analysts in the Report accurately reflect their personal opinion(s) about the subject securities and issuers and/or other subject matter as appropriate. Information that is non-factual, interpretive, assumed or based on the analyst's opinion shall not be interpreted as facts and where there is any doubt as to reliability of a particular source, this is indicated